If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7u^2=56
We move all terms to the left:
7u^2-(56)=0
a = 7; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·7·(-56)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*7}=\frac{0-28\sqrt{2}}{14} =-\frac{28\sqrt{2}}{14} =-2\sqrt{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*7}=\frac{0+28\sqrt{2}}{14} =\frac{28\sqrt{2}}{14} =2\sqrt{2} $
| 3e+6=e+e+e+6 | | 3x+22=13x+27 | | 2(x+1)+1/2(6x+10)=27 | | 5x+20=4x+50 | | 1/6(a-40)=1/3(2a+4) | | 29=8+3v | | 1/6(a-40=1/3(2a+4) | | 13x+27=3x+22 | | -5c^-9c^2=0 | | 57=8(1+8b)+7(b+7 | | 4x-3=9+3 | | y=3*y-20 | | 2x+9=16-6x | | -6+x/5=-3 | | y=3*y+20 | | 6+a/18=5 | | 9x+18+6x= | | 33(p+3)-p=-286-p | | -92=2(7a+3) | | 1-16x=81 | | -6+7(1+2v)=99 | | 17/9=14/3p-1/8+11/8p | | -2-7n=7n-2-5n | | b-24=15 | | a+12=31 | | 8{1/2+1/4c}+3=5c+7-c | | -27-7r=2r+18 | | 2y^2-5y-2=0 | | -6-8x=2-4x-3x | | 2=x/2- | | -2=2r-2-5r | | x2=225/1000 |